Synthetic viability genomic screening defines Sae2 function in DNA repair

نویسندگان

  • Fabio Puddu
  • Tobias Oelschlaegel
  • Ilaria Guerini
  • Nicola J Geisler
  • Hengyao Niu
  • Mareike Herzog
  • Israel Salguero
  • Bernardo Ochoa-Montaño
  • Emmanuelle Viré
  • Patrick Sung
  • David J Adams
  • Thomas M Keane
  • Stephen P Jackson
چکیده

DNA double-strand break (DSB) repair by homologous recombination (HR) requires 3' single-stranded DNA (ssDNA) generation by 5' DNA-end resection. During meiosis, yeast Sae2 cooperates with the nuclease Mre11 to remove covalently bound Spo11 from DSB termini, allowing resection and HR to ensue. Mitotic roles of Sae2 and Mre11 nuclease have remained enigmatic, however, since cells lacking these display modest resection defects but marked DNA damage hypersensitivities. By combining classic genetic suppressor screening with high-throughput DNA sequencing, we identify Mre11 mutations that strongly suppress DNA damage sensitivities of sae2∆ cells. By assessing the impacts of these mutations at the cellular, biochemical and structural levels, we propose that, in addition to promoting resection, a crucial role for Sae2 and Mre11 nuclease activity in mitotic DSB repair is to facilitate the removal of Mre11 from ssDNA associated with DSB ends. Thus, without Sae2 or Mre11 nuclease activity, Mre11 bound to partly processed DSBs impairs strand invasion and HR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sumoylation Influences DNA Break Repair Partly by Increasing the Solubility of a Conserved End Resection Protein

Protein modifications regulate both DNA repair levels and pathway choice. How each modification achieves regulatory effects and how different modifications collaborate with each other are important questions to be answered. Here, we show that sumoylation regulates double-strand break repair partly by modifying the end resection factor Sae2. This modification is conserved from yeast to humans, a...

متن کامل

Functional interactions between Sae2 and the Mre11 complex.

The Mre11 complex functions in double-strand break (DSB) repair, meiotic recombination, and DNA damage checkpoint pathways. Sae2 deficiency has opposing effects on the Mre11 complex. On one hand, it appears to impair Mre11 nuclease function in DNA repair and meiotic DSB processing, and on the other, Sae2 deficiency activates Mre11-complex-dependent DNA-damage-signaling via the Tel1-Mre11 comple...

متن کامل

Genetic Separation of Sae2 Nuclease Activity from Mre11 Nuclease Functions in Budding Yeast.

Sae2 promotes the repair of DNA double-strand breaks in Saccharomyces cerevisiae The role of Sae2 is linked to the Mre11/Rad50/Xrs2 (MRX) complex, which is important for the processing of DNA ends into single-stranded substrates for homologous recombination. Sae2 has intrinsic endonuclease activity, but the role of this activity has not been assessed independently from its functions in promotin...

متن کامل

Multiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiae.

Topoisomerase I plays a vital role in relieving tension on DNA strands generated during replication. However if trapped by camptothecin or other DNA damage, topoisomerase protein complexes may stall replication forks producing DNA double-strand breaks (DSBs). Previous work has demonstrated that two structure-specific nucleases, Rad1 and Mus81, protect cells from camptothecin toxicity. In this s...

متن کامل

The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling.

Double-strand breaks (DSBs) elicit a DNA damage response, resulting in checkpoint-mediated cell-cycle delay and DNA repair. The Saccharomyces cerevisiae Sae2 protein is known to act together with the MRX complex in meiotic DSB processing, as well as in DNA damage response during the mitotic cell cycle. Here, we report that cells lacking Sae2 fail to turn off both Mec1- and Tel1-dependent checkp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2015